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The integral method to numerically calculate the time evolution of kinetic 
systems is discussed and improved for one-dimensional problems. The new 
approach is applied to the solution of the spherically symmetric one-component 
plasma kinetic evolution. The results are compared with those obtained by 
means of the finite-difference solution to the equivalent Fokker-Planck kinetic 
equation. 
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1. I N T R O D U C T I O N  

One of the challenges in contemporary physics is to discover efficient ways 
to describe natural processes using our present computational facilities. 

In the plasma physics case to which this work is mainly addressed, 
kinetic studies are generally carried out using the Fokker-Planck expres- 
sion for the collisional term. Furthermore, the coefficients for this equation 
are usually expressed in the form derived by Rosenbluth e t  al. (') because of 
its simplicity in the applications. This form of the equation clearly shows 
the considerable complexity of the problem, since the mentioned coef- 
ficients are integrodifferential functionals of the time-dependent distribution 
function itself. 

Except for the Maxwellian solution corresponding to thermodynamic 
equilibrium, no exact analytic solutions to the kinetic equation are known. 
The problems are solved in an approximate way, which invariably means 
taking recourse at some stage to numerical computation. It should be 

Departamento de Fisica At6mica. Facultad de Ciencias Fisicas, Universidad Complutense, 
28040 Madrid, Spain. 

813 

0022-4715/92/1100-0813506.50/0 �9 1992 Plenum Publishing Corporation 



814 Soler et  al. 

mentioned that the first computational analysis of the time evolution of an 
arbitrary initial distribution to equilibrium was carried out by MacDonald 
et al. (2) using a simple explicit scheme. The Fokker-Planck equation was 
chosen to correspond to the simplified spherically symmetric case. 

The more general situation in which the geometry has cylindrical sym- 
metry is usually treated through a multipole expansion, also introduced in 
ref. 1, and implies very serious computational problems. Thus, related 
physical cases of modern interest in plasma studies, such as the interaction 
of collisional plasmas with electromagnetic waves, are generally solved 
using approximations to the Fokker-Planck equation. Even at this stage, 
the programs are very complex and present considerable conservation 
difficulties. (3.4) 

Looking for possible improvements in the distribution-function time- 
evolution description, a reasonable step is to examine just why the Fokker- 
Planck equation is used, and what principles stand behind it. Clearly, 
obtaining differential equations is a crucial step for analytic calculations. 
Arriving at closed expressions through integral methods is in general much 
harder. When computational methods are used, it is not so clear that 
differential equations are the best route for the description of physical 
phenomena, particularly if there are integral principles from which they 
derive. 

It must be said in this respect that in the physics literature two types 
of Fokker-Planck equations are considered. For those cases in which the 
first and second moments are constant or depend on the independent 
variables (considering for simplicity the one-dimensional case), the 
Fokker-Planck equation is frequently derived from integral probabilistic 
equations of the type (5) 

f(a,  t + At)= f a P(a, t + Atla', t) f(a' ,  t)da' (1) 

Rigorous derivations of the Fokker-Planck equation are then 
available, and the transition probability for small time increments takes the 
form (5) 

1 { [ ( a - a ' - A ( a ' ) A t ) ]  
P(a, t + At[a' , t )=2[D(a,)~ At]~/2ex p -- (2) 

Here A and 2D are defined in the usual way as the first and second 
moments of P per unit time: 

A = ( A a )  

2D = (Aa Aa)  
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When the Fokker-Planck equation is strictly nonlinear, as in the 
plasma physics case and other kinetic systems, where the moments are 
integrodifferential functionals of the time-dependent distribution function 
itself, no rigorous derivation from a probabilistic equation exists, and the 
equation is commonly justified by other means. Even in this case, however, 
there is a strong belief that the difficulties are technical rather than 
physical, and that a similar equation to (1) is at operation. This assump- 
tion is explicitly made in popular textbooks (see, for example, ref. 6). 

In the present work we explore the possibility that starting with an 
integral equation of type (1), the computational solution to the kinetic 
evolution is simpler than the computational solution to the corresponding 
Fokker-Planck equation, and the physical evolution more transparent. The 
basic step is of course to choose the adequate form for the transition prob- 
ability P in (1). For those cases in which the variation of the moments is 
slow in time, something that is seen to hold in reality (showing that the 
nonlinearity is of a milk kind), we believe it is justified to use for P the 
same expression (2), where now the first and second moments must be 
recalculated at each time step from the evolving values of the distribution 
function. 

The reason behind our assumption is clearly that for slow changes of 
the moments in the system evolution, the transition probability is almost 
constant. So in fact "piecewise in time," the evolution is a succession of 
situations for which the Fokker-Planck equation has coefficients which are 
almost constant in time and depend only on the independent variables, so 
they can be derived from equations of type (1) and transition probabilities 
(2). The continuous path evolution would be approximated by a 
"polygonal path" which presumably would tend to the exact solution as the 
time increment tends to zero. 

It has already been shown in previous papers ~7"8) that an integral com- 
putation of Eq. (1) with P given by (2) describes indeed the evolution of 
arbitrary initial velocity distributions toward equilibrium, just as the 
Fokker-Planck method does. Furthermore, the numerical scheme can be 
defined so that exact conservation of both density and energy holds for any 
length of time. Considering that the Maxwell distribution is a (unique) 
analytical stationary solution of (1), with P given by (2) (this fact being 
true also in case the moments depend on the distribution as in our 
problem), it is hardly surprising that a numerical scheme preserving the 
only two additive constants of the motion evolves also to a Maxwellian 
distribution within the numerical inaccuracies. 

Even if the method has shown promising results, work must be done 
before its potential advantages are fully exploited. 

In order to formulate the problem along those lines that are best 
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suited for an integral procedure, we start by defining a numerical 
approximation which does not completely coincide with the one generally 
used with finite differences. We depart in this sense from our first quoted 
works, where we followed the usual assumptions made in the finite- 
difference numerical approach. Such is the substitution of the continuous 
set of points of a variable within an interval in which a function takes 
certain values, by a discrete set defining the numerical grid. 

A related but essentially different approximation is presented here. The 
new formulation does not change the basic ideas that motivate the method, 
but demands a reappraisal of the numerical techniques to be used in 
practice. 

Together with the detailed description of the new numerical tech- 
niques, a very fundamental improvement for the practical use of the 
integral method is the suppression of unnecessary angular integrations that 
were carried out in refs. 7 and 8. 

In order to make this possible, the transition probability function must 
be defined for the weighted density in the corresponding space where the 
angular variable is irrelevant. The redefinition of the moments to be used 
in (1) is simple but not trivial for this case. 

With the new formulation, we have already been able to derive 
extremely efficient results for the case with cylindrical symmetry. This is the 
ultimate motivation for our work and justifies the effort in its development. 
These results will be published elsewhere. 

In the present work, where an overall description of the method is 
intended, it is more convenient to describe its application to the simple 
spherically symmetric problem. One reason is that the solution to this 
problem is well known and presents no difficulties through the Fokker-  
Planck approach. It is thus easy to check our results against the ordinary 
differential numerical methods used for its solution. The second reason is 
that the integral method is particularly unsuited for this case, because the 
distribution function to be time advanced is the weighted function F(v, t) = 
v2f(v, t). In order to compare with differential results, which solve in fact 
for f (v ,  t), we must divide by v 2. This of course is bound to produce 
considerable uncertainties at the origin. It is thus a considerable success of 
the method that it can be favorably applied even to this case. 

It should be mentioned that for the cylindrically symmetric case the 
distribution function is only weighted in the form v J ( v ,  t). Therefore, the 
actual value of f (v ,  t) at the axis is subject to much less numerical uncer- 
tainty than f (v ,  t) at the origin in the spherical case studied in this paper. 
This is one reason why the integral method can compete with the 
differential method all the better when the situation is less symmetric. 

The paper is organized as follows. In Section 2 we introduce the new 
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approach that seems adequate for a numerical method calculating integrals 
of a distribution function multiplied by an integral nucleus. The new 
approach is addressed to the calculation of transition probabilities in 
problems defined by first and second moments. 

Section 3 deals with setting up a practical scheme to advance the time- 
dependent distributions. 

The general method obtained is applied in Section 4 to the solution of 
the particular problem chosen, whose differential version is the time 
advancement of Eq. (17). 

Section 5 summarizes the results obtained and the advantages of the 
method compared to the usual finite-difference results. 

2. THE BASIC M A T H E M A T I C A L  A N D  PHYSICAL 
A P P R O X I M A T I O N  

In the finite-difference approach to computing differential equations, 
the continuum is replaced by a discrete set of points in which the functions 
are assigned a value. Outside this discrete set of points, the functions are 
not defined, although it is assumed that functionals such as an integral can 
be calculated, with the understanding that the value at a point represents 
a mean value within a grid interval. 

The situation is different in integral methods such as the one described 
in refs. 7 and 8. Here one is not necessarily restricted to assigning values 
only to a discrete set of points. Although for reasons of simplicity it is 
advisable to assign a constant value to functions within each grid interval, 
as well as to the integral nucleus multiplying the function itself, the 
quantities thus defined can be considered piecewise continuous and defined 
at all points within the interval. This has not only a mathematical 
significance, but also a physical meaning, in the sense that if the function 
represents, for instance, the distribution of particle velocities, we assume 
that there are the same number of particles for any equal subintervals 
within a grid interval. In fact it can be said that at this stage, taking all 
functions defined within a grid interval as constant is the only approxima- 
tion considered in the method. One might even eventually consider linear 
or parabolic functions within the grid intervals for a better approximation, 
but we believe it is computationally simpler and probably more accurate 
for equivalent computation times to just subdivide the original grid for 
improved accuracy, keeping the mentioned constant-functions approxima- 
tion. 

We will now illustrate the above considerations in the light of Eq. (1), 
which constitutes our starting point. For  the case to be considered a, a' 
stand for the particle velocities defined within the grid boundaries, and will 
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refer in the present paper to the scalar variable D -- (/)x2 ..1_ 1)2 _1_ /)z2) 1/2 since 
just the spherically symmetric case will be considered in the applications. 

If we followed the approximation taken in finite-difference methods, as 
was done in refs. 7 and 8 for simplicity, the function f(a, t) might be 
decomposed in the form 

f(a, t) ~ ~ f(a, ,  t) 6(a -- a,) (3) 

so that once the analytical expression for the transition probability is 
known, the integration can be immediately carried out. 

As just mentioned, in an integral method it is both possible and more 
convenient to calculate the evolution of each of the continuous (constant) 
functions, which will be now defined within each grid interval at a certain 
fixed time, as follows: 

Aa Aa 
f l ( a ) = f i  for at--~-<a<at-k--- ~ 

(4) 
fl(a) = 0 otherwise 

The border points for each interval have a zero contribution to the integral 
(1), so they need not be considered. 

The function defined in (4) will be called a square pulse. Its time 
evolution through Eq. (1) will clearly constitute the basis of the method, 
since any function can be decomposed (following our basic approximation) 
into a set of square pulses. 

As was stressed in the Introduction, we will restrict ourselves to those 
probability functions P(a, t+ At la, t) whose moments can be calculated, 
and in particular to situations in which neglecting moments higher than 
second order per unit time is justified, and the transition probability can be 
expressed by means of (2). It will be convenient for the following to rewrite 
P in the form 

1 { [a -a ' ( t+ / t t ) ]  2} 
P(a, t+Atla' ,  t ) = - - - - - ~ e x p  -- (5) 

2 q / z  2a 

Where we have defined tr = (DzJt) 1/2 and the expression a'(t + At) is used to 
mean 

a'(t + At) = a' + A(a') At (6) 

Since the transition probability at each grid interval is thus defined by the 
local values of the two moments, that is, by A and D, it would seem that 
in principle the evolution of each square pulse might be predicted with all 
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generality by means of a sufficiently detailed set of functions formed by 
applying (2) to a generic square pulse, that is, by functions Fz(a, a, A). 

There are two reasons why we have not found it advisable to follow 
this procedure for the numerical implementation of our method. 

First of all, from a practical point of view, it is extremely difficult to 
create a reliable scheme that approximates the functions Fz(a, a, A) in the 
grid space, particularly at the boundaries. But also, one cannot actually 
consider the functions Fi(a, a, A) as a set of completely independent 
entities. It is true that the diffusion D contained in a can be given an 
arbitrary value at each grid interval. But the same cannot be said for A, 
since its actual value is well known to depend in the general case on the 
D derivative (a term sometimes called the spurious drift). So in the 
numerical approximation in which derivatives are formed by linear com- 
binations of values at adjacent grid intervals, the actual A value at I must 
be made to depend on the values we assign to D at grid points I +  1 and 
I - 1 .  In other words, in the numerical approximation the functions 
Fl(a, a, A) cannot be defined as strictly local entities, independent of one 
another. 

There is one very convenient way of doing away with these problems, 
to be fully described in next section. It consists in splitting the time step 
into two different operations which we will call diffusion and convection. 
This is computationally much simpler than doing both operations at a time 
as suggested above. For  the strictly diffusive step, it is quite natural to 
define a set of functions Fl(a, a) at each grid interval expressing the time 
evolution of a "square pulse" ft(a) for a certain D and t. These functions 
F~(a, a) are strictly local entities. Also, implementing their evolution in a 
convenient numerical scheme is not difficult. Once this is done, it is also 
numerically very easy to carry out a "convective step," which amounts to 
relocating the diffused square pulses to translated positions at distances 
Azlt, where A is calculated at each grid point. 

Splitting the time step in the mentioned way implies of course that one 
is commiting a certain error. It can be shown, however, that the error is of 
order A t with respect to the exact zeroth-order result. We have checked this 
procedure in other, simpler numerical schemes, particularly the Ornstein- 
Uhlenbeck process, with excellent results. The final stationary solution 
approximates the exact result with all the desired accuracy for refined grids 
and reasonable time steps. An independent check is that it makes no practi- 
cal difference in the system evolution when the order of both operations is 
commuted. 

We will now describe how these approximations have been applied to 
our general problem. 
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3. I M P L E M E N T I N G  T H E  T I M E  A D V A N C I N G  S C H E M E  

It will be sufficient, as said above, to deal with a generic square pulse 
fl(a), since our  distribution functions f(a, t) are assumed to be always 
approximated by a set of ft(a) specified in (4). 

Their time evolution is easily calculated by use of the transit ion 
probabil i ty P: 

f z(a, t ) =  P(a, t + Atla', t) fz(a') da' (7) 

If  we use the transit ion probabil i ty defined in (5), the integration can 
be immediately performed, with the result 

Ft(a, cr)=~ [Erf ( a -  a'~( t + At) + Aa/2)-  Erf ( a-a'~( t + I 2cri - Aa/2)l 

Equat ion  (7) constitutes the basis of  our  numerical t reatment  of the 
problem. Figure 1 shows typical shapes of F~(a, a) for different a values or, 
equivalently (for fixed diffusion coefficient D), at different times when just 
diffusion is present and ai= O. 

u S  
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0 . 6  

(9.2 

- 4  - 2  

/5 

1 I 
0 2 4 

Fig. 1. Exact diffusive evolution of a "square pulse" distribution. For long times the resulting 
distribution approximates a Gaussian. It can be appreciated that the total diffusion up to 
distances spanning 4 grid intervals at each side of the square pulse can account for practically 
all the total norm even when the initial square pulse has lost over two-thirds of its initial 
n o r n l .  
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In the general case in which we have diffusion plus convection, i.e., 
when the position of the diffusive curve center a) changes with time, the 
F~(a, a) shapes will be identical to the ones shown, only shifted to the new 
position of its center after time At, which we have simply called here 
a'l(t + At) in order not to introduce explicitly the convective term A in this 
generic illustrative description. 

We have already explained, however, in Section 2 that it is more 
convenient to split this combination of diffusion + translation process just 
described into its two constitutive parts. 

It is convenient at this point to call attention to one fact. In a discrete 
description, and for no matter what numerical scheme, translating the 
value of a function at a grid point or interval I to a new position, say J 
(i.e., "convection"), inevitably produces some information spread, since in 
general the value at the original I will be distributed into two new 
locations. The smaller the time step, the more pronounced the cumulative 
dispersive effect will be. Diffusion, on the other hand, can be faithfully 
described in our particular integral scheme for any time step, as shown in 
Fig. 1. Thus, for our scheme, large time increments are from this point of 
view to be preferred. We will qualify in the next section this fact from other 
practical limitations. 

We now proceed to examine in detail the two basic operations. 

3.1.  D i f f u s i o n  

In order to calculate the diffusive contribution of Fl(a, a) to other grid 
intervals, we just need to integrate this function for different a values along 
the different intervals adjacent to L 

Let us recall that almost universally numerical differential schemes just 
consider diffusion from the grid interval I to I_+ 1 at each time step. One 
is not restricted to such "3-point schemes" in an integral numerical method. 

It is to be expected that in practice some limit must be fixed for the 
convenient number of contributing points. For  reasons that now will 
become clear "9-point schemes" are probably the best choice balancing 
simplicity, accuracy, and generality in diffusive processes. 

Since the time evolution of F~(a, a) is "universal" once the grid 
spacing is chosen, because only its normalization changes from point to 
point, all one needs to have, in order to implement the method numeri- 
cally, is a set of constants which will be defined for D = 1 and different 
times specified by k, as 

f" a l  + 3 Aa / 2  

C1(O'k) = da|l+da/2 [ri(a, ak)/f,] da (9) 
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In general 

CJ(~k)  : ~alq-(Jq- 1)Aa/2 [Fz(a,  ak)/ fz]  da (10) 
"J al + JA a/2 

These functions are shown in Fig. 2, where they have been plotted as 
functions of a continuous o, although the dots correspond to equal time 
increments (recall that a is proportional  to ,~/~). 

It can be seen in Fig. 2 that for a = 1, about 80 % of the initial central 
interval diffuses to the set of nine grid points, with completely negligible 
amounts going into the next two, not considered in our approximation. 

The time step corresponding to the huge diffusive loss inherent to 
= 1 will be in general much larger than the time steps considered in other 

numerical schemes. Therefore it can be said that taking a = 1 and limiting 
to 9 the number  of neighboring intervals into which the diffusive contribu- 
tion is evaluated are reasonable upper limits if we wish to  set up an efficient 
scheme for diffusive processes with an integral method. 

The numerical program should start by reading a table with the Cs(a)  
values and proceed to adjust the actual diffusion for a certain a by linear 
interpolation. 

u 

0.24 

0.2 

0.16 

0,12 

0.08 

0.04 

0 

/ / ( d )  
~: , , , , ~ ~ @  , , , ~  . . . . .  ~ l  

0.2 0.4 0.6 0.8 1 
a 

Fig. 2. (a-d) Percentage of initial square pulse norm going into grid intervals respectively 
first-, second-, third-, and fourth-rank neighbors to the initial square pulse occupying one grid 
interval. 
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It should be noted that Cl(O ) is amazingly linear up to a ~< 0.25, which 
corresponds to a central norm loss of about 25 %. 

This justifies the linear interpolation for small a values, where the 
table points (which are taken proportional to time intervals) are sparse, 
while at large ~r values the points are sufficiently close to minimize the 
errors. It also shows that a 3-point integral scheme can be considerably 
accurate if a ~< 0.25 for each time step. However, the numerical method we 
are describing is so simple to implement and so fast that there does not 
seem to be much purpose in thus limiting the time step. 

3.2. Convect ion 

Once the diffusive part of the problem is solved, we must consider 
convection. A detailed discussion of the general problem (diffusion+ 
convection) in the light of the transition probability is now in order. 

Let us start our discussion by expressing the first moment with the two 
terms constituting the quantity A: the so-called "friction" force term and 
the "diffusive" force term (spurious drift) 

1 c3D(a) 
A(a)=B(a)+-2  aa (11) 

In those cases in which external forces exist, these external forces would be 
included in the term B together with the corresponding "friction forces." 
The two contributions to A appearing in (11) are best understood in terms 
of Langevin's equation for each set described by a: 

da 
--~ = B(a) + [D(a)]  1/2 F(t) (12) 

where F(t) are Gaussian random variables satisfying 

( F ( t ) )  = 0, (F(u) F ( v ) ) = 2 6 ( u - - v )  (13) 

From these equations, Eq. (11) is well known to follow in first-order 
approximation in At, and F 2. 

It should be mentioned that within the assumptions made in the Intro- 
duction to justify our definition of the transition probability in the non- 
linear kinetic case, the Langevin description would be in fact equivalent to 
our integral formulation and to the Fokker-Planck approach in the sense 
that they all contain in different forms (for each instant t) the same infor- 
mation about the statistical ensemble. The information is contained in the 

822/69/3-4-24 
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first and second moments A and D, which must be reevaluated at each time 
step. 

When we try to implement the situation described by any of these 
equations with a time-advancing numerical scheme, we find that it is of 
course impossible to have infinitesimally small time steps. Also, the 
function D is no longer continuous through the range of a, so rigurously 
speaking, the numerical realization is not possible: we can only 
approximate it. 

Let us try to outline what kind of approximations can be made that 
are physically interesting for our purpose. 

A very important consequence of having for the numerical description 
a finite correlation time in (11) is that the expectation value of ((Aa) 2) is 
no longer exactly 2D. For  those cases where just diffusion is present, this 
may not seem very important. But particularly when we also have the 
convective friction term, the physical relevance of the numerical treatment 
becomes somewhat impaired. 

We can see why, if we consider, for example, an isolated system. For  
such systems, the transition probability P should preserve the number of 
particles and the total energy. We would also like our numerical schemes 
to preserve these quantities. However, exact energy conservation depends 
on the delicate balance between diffusion and convection. In general, 
convection, as provided in (11), depends on friction but also on diffusion, 
so a defective evaluation of diffusion is bound to affect the mentioned 
necessary balance in our approximate "direct" calculation. Thus, energy 
will no longer be conserved unless some other action is taken as explained 
below. Lack of energy conservation is of course what we find in practice. 
Even if we force the norm to be exactly conserved, energy is not. 

We will see in next section that one of the features making integral 
methods attractive is that they are sufficiently flexible to allow corrective 
actions capable of continuously readdressing the system to an energy- 
conserving time evolution. 

For  the numerical implementation of the convective process, now 
consisting in a translation of each grid content to a new location, we use 
the simplest choice of two-diagonal matrices. Writing a numerical algo- 
rithm capable of placing the content of a grid interval in different (generally 
two) grid positions with no loss of norm is a trivial matter. Since the time 
increments used for diffusion are generally very large, the information 
spread resulting from the convective process is now minimized. 

There are several approximations inherent to this factoring prescrip- 
tion. 

In the first place, we are taking for convection at time t+At its 
constitutive values of friction and diffusion that belong to time t. In general 
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these values are assumed to change only slowly, so this first-order 
approximation is justified. 

Second, and more important, for large convective values we must 
assume that the value of convection calculated in grid point I will be valid 
for grid point J, even when J is several grid intervals apart. In cases such 
as the Ornstein-Uhlenbeck process where convection is proportional to a, 
the errors might be inadmissible close to the origin for large convective 
values. Therefore, even if the numerical process introduces no technical 
difficulties, the results must be always judged taking into account the 
approximations made, and the time increment should be chosen so that the 
approximation obtained is acceptable. 

4. A D V A N C I N G  IN T I M E  A SPHERICALLY S Y M M E T R I C  
P L A S M A  DISTRIBUTION 

We will now test the physical and numerical integral approach 
through the solution of a particular problem. 

The transition probability P for kinetic processes governed by 
Coulomb forces is defined at a certain time t by a diffusion matrix and a 
convective vector which can be expressed through the Rosenbluth 
potentials,(1) 

1 ~f(u, t) d3 u 
~(v,  t ) =  - ~ j  I v - u l  

1 f f ( u ,  t)lv--ul d3u ~'(v, t) = - 

Through these definitions (in the convenient form 
Trubnikov (9)) the first and second moments are expressed as 

1 
Di~(v, t ) = ~  ( Avi Avx ) 

z 

82~ = __Le/e d 
8vs 8vk 

adopted by 

A,(v, t )=  ( A v , ) =  - 2 L  e/e 2--- (t4) 
0Vs 

i , k =  1,2, 3 

where Le/e=2(4r~e2/me) 2 and 2 stands for the well-known "Coulomb 
logarithm" used in plasma physics. 
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It has been shown elsewhere (7'8) that the general three-dimensional 
transition probability (5) 

P(v, t + At]v', t) 

1 
- (4~At)3/2(Det[D~t(v', t)]  )1/2 (15) 

[vj-- v~- Aj(v', t) At][ D l(v', t) ]jk[Vk-- V'k-- Ak(v', t) At ] 
• exp 4z~ t 

can be used to advance in time a distribution function. For the case of 
initial spherical distribution, the evolution leads to a Gaussian with good 
approximation. The problem is thus solved in fact with much more 
generality than is actually needed, since a difficult angular integration must 
be performed in spherical coordinates, even for the simple case of spherical 
symmetry. 

There is therefore in the above approach a severe penalty for the 
integral method compared with the differential schemes, because the 
equivalent differential Fokker-Planck equation reduces to a simple form in 
which no trace of the angular variables remains. It is thus a considerable 
success that the integral method works properly, and its power shows in 
that it can reach a stationary solution with exact energy conservation. Yet, 
in practice, when conservation of energy is not essential, the differential 
method is simpler for the mentioned reason. 

In the present paper we set up a different approach to the same 
problem. 

If we are dealing at all times with a spherically symmetric situation, we 
should try to find a spherically symmetric transition probability operator 
that describes the changes taking place in the distribution function of 
velocities from time t to time t + At. This should alleviate the integration 
problem, converting it into a strictly one-dimensional operation. 

Clearly, carrying out the angular integration in (15) if we write it in 
spherical coordinates will not give us the desired operator, because the 
transition would take place from a distribution v'2f(v ') to a distribution 

f(v). 
What we need is an expression for P, operating the transition from 

v'zf(v ') to  vaf(v). Let us see how this expression can be found. 
The only basic requirement is to calculate first and second moments of 

P. Once these are obtained, the expression for P will be the standard one 
described in (2). 

One simple way to proceed is to write down a one-dimensional 
Fokker-Planck equation for the distribution F(v, t)= v2f(v, t). It is not 
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hard to achieve this if we use well-known properties of ~ and ~ to write 
the ordinary spherically symmetric equation in dimensionless units: 

in the form 

a--7=Ov 2 \ a v  v 2 ev] Ov~-~Tv2F)J (17) 

Although this equation is identical to (16), it is written in "Fokker-  
Planck form." This means that we can immediately identify the first and 
second moments of P, < Av ), and ( Av Av ), as 

and 

just readinig off the coefficients of the first and the second term in the RHS. 
Once this has been achieved, we can use the general theory developed 

above for the construction of an integral numerical scheme. 
Before doing so, however, it is convenient to make some comments 

about the nature of the problem. 
From the viewpoint of numerical treatment of partial differential 

equations, (17) appears extremely hard to solve because of its boundary 
condition at the origin, where both the function and its derivative vanish. 

It is thus rather ironic that there exists the alternative (16) to Eq. (17) 
which happens to be much simpler to solve from the point of view of 
numerical computation. For it is (17) that is written in the explicit Fokker-  
Planck form, while (16) is obviously not. Unfortunately, however, while 
(16) is easy to solve numerically with differential methods, it is unsuitable 
for our integral procedure, which is based on knowledge of the transition 
probability operator (2). 

In any case, the difficulties of the problem are a test for the capacity 
of the method to cope with very general situations. It is interesting that the 
integral method for solving the equivalent to Eq. (17) allows us in a very 
direct way to follow the physics of the situation and the limitations of the 
numerical approximations that are made. This is a consequence of having 
the evolution described by its two basic features, diffusion and convection, 
which are blurred in the simpler description (16), but quite clear in (17). 

We will now describe the results of numerical computation by our 
integral method, applied to Eq. (17). Since the initial conditions should be 
lost in the subsequent evolution, we will always take for simplicity a step 
function for f (v)  at time t = 0, with the grid large enough so that the tails 
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are vanishingty small at the grid edge, and no appreciable norm is lost in 
the iteration. 

As might be expected, the evolution takes place without any 
particularly distinctive feature except at the origin. 

Since the method can run expediently with any desirable time step, let 
us see what it shows in practice. One immediately realizes that reasonable 
changes in the time step have no great consequence for diffusion, because 
diffusion changes with the square root of time. Convection on the contrary 
changes dramatically, since it increases linearly with time. In particular, at 
the origin, its content can jump a number of grid points, literally emptying 
out the central grid intervals at each time step. This is, however, 
unphysical, as mentioned in our general discussion, since we are 
extrapolating the large values convection reaches at the center (in fact it 
becomes divergent) to regions where it would be much smaller. So we can 
wildly overestimate convection and end up in very few time steps at 
solutions having no relation with reality. 

On the other hand, if one takes very small time steps, diffusion is 
primed with respect to convection, which becomes insignificant. There is 
here a clear case of the mentioned loss of information associated inevitably 
with convection in numerical schemes and seldom referred to. 

When small convection steps are repeated many times, they amount in 
practice to diffusion. (Consider the origin content: each time step some of 
it advances to a further grid interval. Progressively it ends up having a 
Gaussian shape which for small time increments can be centered at the 
origin itself. Only if convection is large enough is it centered at further 
intervals. Thus, if there is diffusion from, say, the second interval toward 
the origin, the "small time interval effect" can make the origin grow 
abnormally. ) 

One thus observes (see Fig. 3A) for too small At the inability of the 
scheme to convect away the diffusion accumulating at the central region, 
which is seen to grow with an unphysical slope. This is incidentally the 
same type of solution which obtains with differential scheme solutions of 
Eq. (17) because of their inability to cope properly with the central 
boundary conditions. (These schemes are unable to reach the situation 
described above for large At in which large convection overtakes diffusion. 
The reason lies in that these cases must be described by means of transition 
matrices having nonzero diagonals far from the central ones, and such 
matrices are not present in ordinary differential numerical descriptions.) 

It is thus quite understandable that the time increment must be chosen 
carefully if we wish to reproduce the balance between diffusion and convec- 
tion which takes place at the origin when the physical Gaussian solution 
is reached. 
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Fig. 3. Stationary solutions of Eq. (1) corresponding to Eq. (17) for different advancing time 
increments. (A-C)  Solutions corresponding to the expected Gaussian shapes in f ( v )  = F(v)/v z. 
(D F) Solutions corresponding to F(v). The time intervals chosen were respectively A T =  
0.0015, 0.00175, 0�9 The f ( v )  values for the first grid interval are stationary but have large 
errors (they fall out of scale in A). These errors do not appear in the F(v), which is the actual 
function advanced in (1). The reason for the different central behavior in A-C is explained in 
the text. 

There is more, however, to the problem if we are looking for a com- 
pletely satisfactory solution. Since our system is an isolated one, its evolu- 
tion being governed by self-diffusion and convection in velocity space, 
energy is physically conserved. Calculating the evolution of energy in the 
numerical solution shows generally an energy increase�9 This is associated 
with the numerical inaccuracy in matching the proper amount of convec- 
tion to balance the energy increase associated with diffusion, as was 
mentioned in Section 3. 

The solution to this problem can be found, as was done elsewhere, (7'8) 
in an adjustment of convection by means of some parameter. 

The adjustment is made at each time step so that the system is 
constantly reconducted to its energy-conserving path. When this procedure 
converges, the solution obtained is unique and leads to a Gaussian as 
expected�9 

In practice, we multiply the friction part of diffusion by a convenient 
function obtained after some adjustment, which we will call the "correla- 
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tion function" since it should adjust the proper numerical amount of 
friction to the amount of numerical diffusion. It contains one single 
parameter adjusting itself at each time step in the energy-conserving 
direction. 

The correlation function C(v) used for the runs shown in Fig. 3 is 

C(v) = [1 + c(t) exp(avb)] 1/2 (18) 

where a, b are fixed numbers and the self-adjusting parameter c(t) is 
calculated in the program at each time step as a function of the energy 
error E ( 0 ) -  E(t) by 

c(t + s t )  = c(t) + {k[E(0)- E(t)] }3 

The energy evolution with this convenient "ansatz" (certainly not 
unique), with k a constant number, becomes oscillatory with decreasing 
amplitude until it completely stabilizes at c(t) values close to 1. 

We have already discussed the theoretical justification for this numeri- 
cal procedure. In the particular problem we are considering, there is 
another reason to believe that some adjustment of the "local" numerical 
scheme is necessary. By local we understand transitions to only close 
positions in the grid. 

The point is that for the set of particles of lowest energy, there may be 
an incompatibility between two different assumptions: the physical assump- 
tion of small momentum transfer in all transitions, and the numerical 
assumption that limits interaction to particles occupying neighboring 
boxes. 

In fact, the particles in any of these boxes can spread to the set of 
three contiguous grid intervals with conservation of particle number and 
energy, except at the origin, where this is impossible. Thus, in order to have 
overall numerical energy conservation, there must be some interaction 
between the lowest energy particles and some particles further out (not 
immediately close) in the grid. Many possibilities are then open, which of 
course modify the whole numerical description of the overall interaction. 

We stress that this problem is of course also present in the numerical 
differential description with finite differences, which also does not Conserve 
energy. 

A great practical advantage of our integral method is that taking 
corrective actions as the one just described is straightforward and causes 
no numerical difficulties because of the positive-definite nature of all the 
processes. It is not clear that a similar corrective action can be taken in 
practice for the differential description. The reason is that integration of 
transition probabilities deals always with positive numbers, while differen- 
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tiation does not. Avoiding numerical instabilities introduced by a corrective 
function in a differential method is probably difficult. 

In any case, our main point is that a corrective "correlation function" 
is not only justified in practice, but also deeply rooted in the physics of the 
problem. Somehow a strict locality of interactions in velocity space must be 
relaxed. In particular the lowest energy particles can be removed from their 
grid position by high-energy particles losing small amounts of energy, 
which redefines the interaction in the whole grid. This "second-order effect" 
is essential for the conservation of energy and is carried out successfully by 
our corrective "correlation function." 

5. D I S C U S S I O N  OF N U M E R I C A L  R E S U L T S ,  A N D  
C O N C L U S I O N S  

Some of the numerical results have already been described in relation 
to Fig. 3. Other points will now be conveniently detailed. 

The outcome of the numerical problem solving the integral equa- 
tion (1), equivalent to the differential equation (17), is contained in Fig. 3. 
There is one large difference between the solutions to Eqs. (16) and (17), 
in that in the latter one the grid points correspond to equal densities in 
velocity space. Thus, in order to obtain Figs. 3A-3C from Figs. 3D-3F, we 
must divide by v 2. Clearly, the points close to the origin must be expected 
to have very large errors, although in reality these errors correspond to a 
vanishingly small population. If the time increment is changed, the shape 
corresponding to Figs. 3D-3F is practically unchanged. The behavior of 
the origin in Figs. 3A-3C, on the other hand, changes appreciably. For 
smaller time increments the points close to the origin are enhanced, and for 
larger time increments they are depressed. Except for these few points, the 
rest of the curve is, for a large range of time increments, a Gaussian. The 
reasons for this numerical behavior have been extensively discussed in 
Section 4. 

The total energy time evolution is shown in Fig. 4. As mentioned 
above, although there is considerable freedom in the choice of the correla- 
tion function, and our choice was guided by the phenomenological 
criterion of optimizing the results, it is clear that the problem is physically 
meaningful and we plan to study which functions C(v) can be expected to 
best correct the errors introduced by the numerical approximation. 

In practice, a correlation function C(v) can be considered adequate 
when it does not perturb the distribution function shape, and preserves its 
smooth evolution toward the Gaussian equilibrium. On the other hand, the 
dynamic process of varying c(t) must be tuned to obtain a damped 
oscillatory behavior. Both objectives were achieved quite satisfactorily with 
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Fig. 4. Energy evolution for integral and differential numerical solutions. (The initial 
oversized transient oscillatory behavior in the integral solution is expected to be suppressed 
in improved choices of the "correlation parameter"). (a) Integral solution, (b) differential 
solution. 

(18) in the results shown in Fig. 4. Besides conserving energy exactly, it 
shows energy conservation throughout the whole evolution, and absolute 
final stability for any length of computation times at exactly the initial 
energy. 

The most significant success of the numerical method can be seen in 
Fig. 5. The tail behavior is very good, as shown in the general tendency of 
the function F(v 2, t)/1) 2 t o  a Gaussian throughout the whole v domain in 
the logarithmic representation. 

Finally, we should comment about the computational efficiency of the 
method. 

The comparison is not completely fair in this case, since Eq. (17) does 
not seem soluble by ordinary numerical differential methods because of the 
origin boundary condition. Since its equivalent, the simpler equation (16), 
is the closest one that can be solved, we have chosen it to benchmark 
computation times. 

The differential equation was solved with a predictor (explicit)- 
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corrector (Crank-Nicholson) method, in which the nonlinear coefficients 
are calculated at half time step to preserve the second-order precission of 
this scheme. The time increments were the same in both cases. The com- 
putation times were in the ratio 5/6 in favor of the differential scheme. This 
should be attributed to the differential scheme being a 3-point scheme, 
while the integral scheme was our standard 9-point scheme with the time 
evolution split into a diffusive and a convective part. 

Although the (nonoptimized) computation times are practically equal, 
there is an interesting difference to be remarked. The integral method diffu- 
sion is "exact" (in the numerical approximation) for each time step, while 
the diffusion produced in the finite-difference numerical solution is not. In 
fact, the diffusion for each grid interval is proportional to At/(Av)  2 per time 
step in the finite-difference method, while it is proportional to the square 
root of this quantity in the integral method, as diffusion should always be 
Esee in this relation our comments to Eq. (9), and Fig. 1]. 

It is only in the asymptotic time, after many time steps, that the 
differential method starts diffusing proportionally to the square root of 
time, while the integral method does so from the first time step. This fact 
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explains the apparent  difference in the time evolution of both methods. 
Although the time steps are equal, the integral method advances faster 
because in practice [At/(Av)2]l/2>> At/(Av) 2, and diffusion proceeds at a 
quite faster rate. Therefore, also the integral time scheme is in fact com- 
putationally much more efficient than the differential one. This fact is 
clearly shown in the logarithmic scale comparison of both methods (Fig. 6) 
after 1000 steps for the same time increment. Obviously the integral 
method advances much faster. 

In conclusion, considering the three equivalent formulations of non- 
linear kinetic processes, the time-dependent integral transition probability 
(1), the Fokker-Planck  differential equation, and Langevin's stochastic 
method, it seems that the first one deserves strong attention as an 
alternative for approximate numerical methods, particularly because some 
of the technical difficulties associated with the numerical solution of 
differential equations (stability, boundary conditions, conserved quantities) 
seem to find clear, almost trivial possibilities for solution�9 This greater 
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Fig. 6. Logarithmic scale distribution functions vs. v z after 1000 iterations. Diffusive 
evolution is faster in (a) the integral method than in (b) finite-difference schemes for the same 
time step At= 0.00175, as explained in the text. 
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flexibility allows one to concentrate on new ways to preserve in the 
numerical solution essential aspects of the physical processes, such as 
energy conservation. 
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